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Abstract: Reinforcement-learned locomotion enables legged robots to perform highly dynamic
motions but often accompanies time-consuming manual tuning of joint stiffness. This paper
introduces a novel control paradigm that integrates variable stiffness into the action space
alongside joint positions, enabling grouped stiffness control such as per-joint stiffness (PJS),
per-leg stiffness (PLS) and hybrid joint-leg stiffness (HJLS). We show that variable stiffness
policies, with grouping in per-leg stiffness (PLS), outperform position-based control in velocity
tracking and push recovery. In contrast, HJLS excels in energy efficiency. Despite the fact that
our policy is trained on flat floor only, our method showcases robust walking behaviour on
diverse outdoor terrains, indicating robust sim-to-real transfer. Our approach simplifies design
by eliminating per-joint stiffness tuning while keeping competitive results with various metrics.
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1. INTRODUCTION

Animal and human-like locomotion has a significant ad-
vantage over wheeled mobile robots. They can traverse
unstructured, challenging terrains. Therefore, various ap-
proaches are developed to solve quadrupedal and bipedal
locomotion. Conventionally, this involved model-based
controllers (Donghyun et al., 2019; Jared et al., 2018)
with a complex pipeline that managed gait schedule, state
estimation, whole body impulse control and actuator con-
trol. Recently, this discipline has made significant progress
through model-free reinforcement learning (RL) methods.
These approaches enable the design of controllers capa-
ble of following high-level commands (walking, running,
jumping, etc.) and directly actuating the joint motors,
bypassing the need for path planning and other parts
within the control pipeline.

Usually, these controllers (Shuxiao et al., 2023; Gilbert
et al., 2023) follow a position- or torque-based paradigm.
The high-level controller (RL agent) learns a position
policy in the position-based paradigm. Given the state,
the RL agent predicts desired joint positions at low fre-
quencies, which are transferred into torques by a high-
frequency PD controller. This control paradigm requires
manual engineering of motor stiffness and damping for
different tasks. In contrast, humans and animals can adjust
their stiffness and damping to handle different tasks. For
example, we stiffen our foot joints when landing with a
foot but relax in the swing phase. The torque-based control
circumvents this by directly learning a torque policy, which
shows higher compliance (Donghyeon et al., 2023). Gen-
erally, torque-based policies are more challenging to train
because they require learning complex dynamics. On the
other hand, position control has a good initial pose, easing
the learning progress in the beginning. Torque-based RL

Fig. 1. A quadrupedal robot traverses across different
terrains with variable-stiffness RL policy.

agents are usually executed at higher speeds, necessitating
more powerful hardware or smaller networks. This leaves
the researcher with a choice, either additional tuning of
joint stiffnesses or a hard-to-train policy with limits in
scope.

Another approach (Lei et al., 2024; Jiaming et al., 2024) is
variable stiffness control, which is widely used in robotics,
particularly in manipulator applications, to improve safety
while still being able to track accurately. Preliminary
studies from Lei et al. (2024) have shown that applying this
technique to locomotion could enhance energy efficiency.
This also seems reasonable as higher stiffness is required
during contact with the ground, but less is needed during
the swing phase. In quadruped locomotion, research from
Xinyuan et al. (2022) within model-based frameworks has
shown that variable stiffness can reduce contact forces.



However, successfully achieving locomotion with variable
stiffness remains a significant challenge.

This paper studies reinforcement-learned controllers that
learn joint stiffness alongside target positions. Conse-
quently, the robot can automatically adjust the motor
stiffness according to the task requirements. Our approach
shows superior velocity tracking and push recovery perfor-
mance while maintaining good energy efficiency and robust
sim-to-real transfer performance. Results of the walking
policy are shown in Fig. 1 and a video is available online 1 .

2. RELATED WORK

RL has emerged as a promising approach for solving lo-
comotion tasks, offering two primary paradigms: position-
based and torque-based control. Gilbert et al. (2023) and
Nahrendra et al. (2023) predict target joint positions,
which are actuated using proportional-derivative (PD)
controllers. These methods are widely favoured for their
ease of training and robustness in high-level command
tracking. Within this control, the torque applied to the
motors is calculated using Eq. (1)

τt = Kp(q
target
t (θ)− qt) +Kd(q̇des − q̇t) (1)

However, they suffer from limited compliance behaviour
due to fixed stiffness and damping values (Kp and Kd),
requiring extensive PD gain tuning that is often task- and
robot-specific (Gilbert et al., 2023).

In this control, the PD controller acts as a low-level
tracking module, where the proportional gain (P-gain) is
representative of the stiffness and the derivative gain (d-
gain) for the damping. Zhaoming et al. (2021) investigated
the impact of the p-gains, suggesting that large propor-
tional gain leads to instabilities in training. In contrast, the
low proportional gain has significant tracking errors and
behaves like a torque controller. Other research studied the
impact on the derivative gain. Laura et al. (2023) showed
small derivative gains result in learning instabilities, and
large gains prevented tracking the target velocity.

To circumvent this PD controller, Shuxiao et al. (2023)
and Donghyeon et al. (2023) studied torque control as an
alternative and applied it to quadruped and biped locomo-
tion. In this control, the actions are directly applied to the
motors. Although this control showed higher achievable
rewards in the long term, it must be executed at higher
speeds to perform similarly to position control. It is more
difficult to train initially. The higher control speeds limit
the design freedom of torque-based controllers.

Xinyuan et al. (2022) showed for model-based control,
that adapting stiffness according to the contact force led
to sufficient walking for a quadruped on uneven terrains.
Bogdanovic et al. (2020) studied the impact of including
joint stiffness alongside joint positions. The torque was
then calculated by Eq. (2).

τt = Kp
t (θ)(q

target
t (θ)− qt)−Kd

t (θ)q̇t (2)

Overall, their work did not test their approach to locomo-
tion but showed the superiority of this concept against

1 https://drive.google.com/file/d/1SmwQSM5026Ri41Ue6J_

IgP0NqYIFxCOt/view?usp=sharing

Term Distribution Units Operator

Environmental properties

Payload Mass (trunk) U(−1.0, 3.0) kg additive
Hip Masses U(−0.5, 0.5) kg additive

Ground friction U(0.3, 1.25) - multiplicative
Gravity offset U(−1.0, 1.0) m/s² additive

Noise in the observation space

Joint positions U(−0.01, 0.01) rad additive
Joint velocities U(−1.5, 1.5) rad/s additive
Local velocity U(−0.1, 0.1) m/s additive

Local ang. Velocity U(−0.2, 0.2) rad/s additive
Projected gravity U(−0.05, 0.05) rad/s² additive
System delay U(0.0, 15.0) ms additive

Stiffness U(0.8, 1.3) N/m multiplicative
Damping U(0.5, 1.5) kg/s multiplicative

Motor strength U(0.9, 1.1) - multiplicative

Table 1. Domain randomisation in simulation

torque and position control for two scenarios: a single-
legged hopper and a manipulator. The single-legged hop-
per achieved more considerable jumping heights, and the
manipulator maintained a continuous contact force during
reference motions with the adjustment of the action space.

Inspired by these findings, we explore the integration of
joint stiffness alongside joint positions in the action space
for reinforcement learning-based quadruped locomotion.

3. METHODS

We aim to train a policy πθ with parameters θ that can
follow high-level velocity command vcmd = [vcmd

xy , ωcmd
yaw ]

T .

This includes the lateral velocity vcmd
xy as well as angular

rotation speed ωcmd
yaw . The prediction of joint targets along

joint stiffnesses should accomplish this. An overview of our
approach is shown in Fig. 2.

3.1 Training

We train our controllers using Proximal Policy Optimisa-
tion (PPO) (Schulman et al., 2017) with 4096 environ-
ments in parallel for 2000 epochs. To improve learning
efficiency, we apply early termination if the robot’s ori-
entation exceeds 90 degrees from its horizontal position, if
joint or torque limits are exceeded or if the robot falls onto
its hips, trunk, or LIDAR. The episode lasts 20 seconds,
and we sample commands every 5 seconds.

Simulation environment: We use Mujoco-MJX (intro-
duced by Todorov et al. (2012)) as the simulation en-
vironment and apply Domain randomisation to achieve
a successful sim-to-real transfer. Table 1 shows the ran-
domised parameters. Additionally, we expose the policies
to external pushes applied from random xy directions. The
force magnitudes of the pushes are randomised between 50
- 150 N, and the impulse is 8 - 15 Ns. The push is applied
every 6 seconds, so the policies have to learn to react to
such disturbances.

Observation: Observations passed to the actor must also
be observable during deployment. This limits the freedom
of the observations that are passed. The observation vector
ot, as in Eq. (3), is composed of the body angular ωt and
linear velocity vt , projected gravitational vector gt, joint
angle difference from the default position qt−qdefault, the
last action at−1 and the velocity command vcmd.

https://drive.google.com/file/d/1SmwQSM5026Ri41Ue6J_IgP0NqYIFxCOt/view?usp=sharing
https://drive.google.com/file/d/1SmwQSM5026Ri41Ue6J_IgP0NqYIFxCOt/view?usp=sharing


Fig. 2. Architecture of the position-based control (blue dashed line) compared to our variable stiffness control.

Reward Equation (ri) Weight (wi)

Lin. velocity tracking exp

(
−4

(
vcmd
xy − vxy

)2)
1.5

Ang. velocity tracking exp

(
−4

(
ωcmd
yaw − ωyaw

)2)
0.8

Linear velocity (z) v2z -2.0
Angular velocity (xy) ω2

xy -0.05

Orientation g2
xy -5.0

Feet air time
∑4

f=0
(tair,f − 0.1), |vcmd| > 0.1 0.2

Joint accelerations q̈2 −2.5× 10−7

Joint power |τ | · |q̇| −2× 10−5

Power distribution var(|τ | · |q̇|) −10−5

Foot slip
∑4

f=0
||vf,xy ||2, if z < 0.01 -0.1

Action rate (at − at−1)2 -0.01

Foot clearance
∑4

f=1

(
pdes
f,z − pf,z

)2
|vf,xy | -0.1

Center of mass
(
pcom,xy − pdes

xy

)2
, pdes

xy =

∑4

f=1
pf,xy

4
-1.0

Joint tracking (qtarget
t − qt+1)2 -0.1

Base height (hdes − h)2 -0.6

Hip exp
(
−4 ∗

∑4

k=1
(qhip,k − qdefault

hip,k
)2
)

0.05

Collisions ncollisions -10.0
Termination ntermination -10.0

Table 2. Reward functions.

ot =
[
vcmd,vt,ωt,gt, q̇t,qt − qdefault,at−1

]T
(3)

We utilize privileged information to learn the critic net-
work, which is dropped in the inference phase. The priv-
ileged vector st consists of the scaling factor for pro-
portional and derivative gains and motor strength σt.
In addition, st contains ground friction, adapted masses,
disturbance force, and regular observation, as stated in Eq.
(4).

st = [kp,t, kd,t, σt, µ,mt,Fkick,ot]
T

(4)

Reward: The reward functions, similar to Nahrendra
et al. (2023); Rudin et al. (2022); Bogdanovic et al. (2020),
consist of task rewards to follow the command given
and auxiliary rewards (penalties) to stabilize the learning
process. An overview is provided in Table 2.

Given the reward components, the total reward is calcu-
lated using Eq. (5).

rt =
∑

ri · wi · dt (5)

In addition to existing rewards from the literature, we
introduced a ”Center of Mass” reward to encourage a
stable walking gait. This reward calculates the desired
centre-of-mass position pdesxy , as the mean xy-components

of the feet positions and penalises the squared error from
this target, ensuring the centre of mass remains within the
support polygon.

Action Space: The position-based controller uses 12
actions to specify target positions for each joint. Our
controllers extend actions to adjust the stiffness of the PD
controller, ranging from 20 to 60. To study the stiffness
adjustments on quadrupedal robots with 12 DoFs, we
propose different grouping strategies:

• Individual Joint Stiffness (IJS): Predicts stiffness
for each joint individually, extending the action space
to 24 dimensions.

• Per Joint Stiffness (PJS): Groups joints into hip,
thigh, and knee categories, predicting one stiffness per
group for a 15-dimensional action space.

• Per Leg Stiffness (PLS): Predicts one stiffness
value per leg, adding four actions for a 16-dimensional
space.

• Hybrid Joint-Leg Stiffness (HJLS): Combines
PJS and PLS by representing stiffness as the outer
product of a leg stiffness vector (kl ∈ R4) and a
joint group stiffness vector (kj ∈ R3), resulting in
19 dimensions.

The damping of the PD controller is set to a fixed
relationship to the p-gain, according to Eq. 6.

Kd
t = 0.2

√
Kp

t (6)

This relationship is inspired by the ratio between PD gains
as in the works of Gilbert et al. (2023) and Rudin et al.
(2022).

4. EVALUATION

In this section, we present the experimental results in
both Mujoco-MJX and real-world hardware experiments
to answer the following questions:

• Can variable stiffness policies improve velocity com-
mand tracking performance?

• Do variable stiffness policies show greater robustness
against disturbances?

• Are variable stiffness policies more energy efficient?
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Fig. 3. Absolute tracking error for trained policies.

4.1 Baseline

The baseline is formed by position control policies with
low stiffness 20, referred to as P20, and high stiffness 50,
referred to as P50. These baselines, trained under identical
conditions, follow prior choices from Nahrendra et al.
(2023); B et al. (2024) for lower stiffness and Gilbert et al.
(2023) for higher stiffness. While Gilbert et al. (2023) used
even higher gains, we observed instabilities in training and
selected 50 as the upper stiffness. These baselines highlight
trade-offs, with each stiffness excelling in specific tasks.

4.2 Performance on walking and running

We evaluate walking and running performance by measur-
ing tracking errors between the commanded and achieved
velocities, a common method used in the works of Joonho
et al. (2020). Controllers are tested on eight discrete head-
ings (0°, 45°, ..., 315°) with target speeds of 0.5 m/s, 0.8
m/s, and 1.0 m/s to prevent bias for speed class or direc-
tion. Each heading direction is held for eight seconds, and
domain randomisation is turned off to focus on tracking
accuracy. Fig. 3 shows the absolute velocity tracking error
averaged over the heading directions at different speeds.
The comparison indicates that P20 has a significant track-
ing error, whereas P50 maintains lower error. Predicting
individual joints in a policy (IJS) demonstrates the highest
tracking error. However, our grouped stiffness policies, PJS
and PLS, show lower or comparable tracking errors than
P50. PLS manages to outperform all other controllers in
every speed class.

4.3 Push recovery

Robustness is evaluated by exposing the locomotion policy
to external disturbances. Specifically, force pushes to the
robot’s trunk with domain randomisation. The evaluation
is performed in the same simulation environment as the
training. Push recovery is measured under the following
conditions:

• Walking speed: 0.3 m/s
• Force push magnitude: 50 - 300N
• Push duration: 0.1 sec

Pushes are applied randomly in the xy-plane. The robot
must walk straight for 5 seconds, with a random push
applied between 2.5 and 3.5 seconds. A fall results in
failure, while recovery and walking for 5 seconds are

Control paradigm
Success Rate (%)

< 100N < 150N < 200N < 250N < 300N

IJS 100.00 98.73 96.06 93.53 90.44
PJS 100.00 100.00 96.63 89.34 81.64
PLS 100.00 99.66 97.66 92.34 85.65
HJLS 99.83 99.32 97.03 91.58 83.93
P20 99.48 99.07 94.98 89.93 83.08
P50 100.00 99.75 97.20 89.93 81.77

Table 3. Push recovery success rates within the
specified push force magnitudes.

(a) (b)

Fig. 4. Comparison of maximal recoverable force
push. The polar scatter plot (a) shows the outcome
of the experiment for specific forces (red=failure,
green=success). The SVM, with classification confi-
dence 90%, is used to draw a success boundary in
the polar plot (a), which is then used to compare our
methodology against the baselines in plot (b).

considered a success. The randomisation of the push event
is done to prevent bias due to specific postures.

The success rate for pushes within the magnitude con-
straints is reported in Table 3. Within the push force of
150N (training range), our controller PJS performs best.
Above 150N IJS shows the highest success rate, closely
followed by PLS and HJLS. Since PLS also outperformed
the baselines in velocity tracking and shows the second-
highest success rate (< 300N), we use this policy for
further comparison.

For comparison, we draw a polar scatter plot illustrating
the magnitude and angle of the force applied to the robot
trunk. We utilise a Support vector machine(SVM) with a
radial bias function kernel to classify a maximum recovery
boundary. This maximum recovery boundary is used to
compare the methods. Figure 4 shows the results of this
experiment.

All policies show higher resilience in and against the
walking direction (0, 180°). Pushes applied from the side
are not well compensated. P50 shows a smaller region than
P20. Our policy PLS demonstrates a convex and similar
shape to the P20.

Figure 5 further demonstrates how the baseline policies
react to a force of 190N applied from the frontal left
direction. The graph shows the stiffness values plotted
over time for the respective legs. The baseline policies
fall, whereas the PLS manages to recover by adjusting the
stiffnesses of the legs. Notably, the legs opposite to the
push stiffen way above the maximum stiffness of the high
stiffness policy, and the legs towards the push relax. These



Fig. 5. Push experiment: Stiffness plotted over time.
Push conditions: tpush = 3s, tduration = 0.1s, F =
190N , θ = 225◦ accounting for the point in time,
duration, magnitude and direction at which the push
is applied. The force is applied from the frontal left
direction. (FR/FL: front left/right, RR/RL: Rear
right/left)

results demonstrate the superior performance of variable
stiffness in this setting.

4.4 Energy efficiency

Similar to the work of Joonho et al. (2020), we evaluate
energy efficiency with the cost of transport (CoT) for
different speed classes. They define the CoT as Eq. (7),
where Mtotal accounts for the total mass of the robot, τ
denotes the measured torques, q̇ the joint velocities, g the
gravitational acceleration and v for the measured velocity.

CoT =
E

Mtotalgd
=

P

Mtotalgv
=

τ q̇

Mtotalgv
(7)

We measure this metric applied to the same experiment
as described in section 4.2. The results are shown in
Fig. 6 and reveal mixed results. The lower the CoT, the
more energy efficient. Our policies PJS, PLS and HJLS
demonstrate lower CoT than P50 but higher than P20.
This is also expected as higher stiffness leads to higher
torques and, therefore, higher energy consumption. Our
policies can adjust their stiffness between 20 and 60; thus,
we expect the CoT to be somewhere in between. Lowering
the lower border of stiffness compromised gait quality
in our experiments. HJLS demonstrates the lowest CoT
among our policies and, therefore, remains competitive
with P20. These results validate the effectiveness of our
proposed methodology in grouping the stiffness.

4.5 Sim-to-real transfer

During hardware deployment, we evaluate the robustness
of the learned locomotion by adding a payload or walking
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Fig. 6. Cost of Transport for trained policies.

Fig. 7. Payload experiment: Adding a 5kg mass during
walking to the baselines and PLS policy.

over diverse terrains. In training, the policy encounters a
randomised payload of up to 3kg. For evaluation, we add
a 5 kg payload on the robot during walking and observe
increased stiffness while maintaining a proper gait, as seen
in Fig. 7. When the payload is removed, the stiffness
decreases accordingly.

We also evaluate our variable stiffness policy in the out-
doors to traverse various terrains. Although it is trained
solely on a flat floor, the learned policy demonstrates ro-
bust walking across diverse surfaces, including mud, grass,
sidewalks, and sand (see Fig. 8).

5. FUTURE WORK

Our work demonstrates the benefits of variable stiffness.
In future works this method could be applied to learn even
more different tasks like crouching, hopping stair traversal
and imitating motions. As this approach is able to adjust



Fig. 8. Despite being trained solely on a flat floor in simulation, we showcase the robot’s ability with our variable-stiffness
RL policy to walk robustly on diverse outdoor terrains, such as grass, stones, and sand.

the stiffness this method might also learn these tasks for
multiple robot types and combine it into one policy.

6. CONCLUSION

In this paper, we studied an alternative approach to learn-
ing locomotion on a quadruped robot, which uses joint
positions alongside stiffnesses as the action space in a re-
inforcement learning paradigm. Simulation and real-world
experiments are conducted to investigate performance on
walking and running, as well as push recovery, energy
efficiency and sim-to-real transfer. Our policy, which pre-
dicts stiffness per leg, outperformed baselines in the ro-
bustness test and velocity tracking. On the other hand,
individual joint stiffness prediction struggled, underscor-
ing the efficiency of our found groupings. Hardware tests
show stiffness adaptation when encountered with payload
and robust walking over diverse terrains. Our research
highlights the potential of reinforcement learned variable
stiffness locomotion as it combines the advantages of low
and high stiffness.
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